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1 Straight lines in Euclidean geometry

Although Euclid purports to define straight line, his definition is enigmatic: “a
straight line is a line that lies evenly with the points on itself.” Straight lines are
treated in Euclidean geometry as primitive, undefined objects satisfying certain
axioms. However, the theorems resulting from these axioms give us many ways
of characterizing straight lines. For example, we know that if a straight line
cuts two parallel lines transversally, then corresponding angles are equal (Book
I, Proposition 29). In this essay, when we talk about straight lines, we always
mean straight lines in Euclid’s sense. However, we want to related it to two
other ways of describing straight lines.

2 Straight lines in analytic geometry

In modern analytic geometry we coordinatize straight lines and represent them
on a Cartesian plane by equations in two variables. In fact, many school children
think that this is the definition of straight line: it is the set of solutions (x, y)
to the equation

Ax + By = C, (1)

where A, B, and C are constants (with at least one of A and B being non-zero).
In this section we aim to show two things:

I. all solutions to (1) lie on a straight line

II. all straight lines can be described as the set of solutions to an equation of
the form (1).

Suppose we have a solution (x0, y0) to the equation (1). Additional solutions
can be obtained from (x0, y0) by moving uB in the x direction and −uA in the
y direction. This new point, say (x1, y1), will have coordinates (x+uB, y−uA).
Thus

Ax1 + By1 = A(x + uB) + B(y − uA) = Ax + uAB + By − uAB = Ax + By,

so if Ax + By = C, then Ax1 + By1 = C. So if the point (x0, y0) is a solution
to the equation, then so is (x1, y1) = (x0 + uB, y0 − uA).
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P = (x0, y0)

Q = (x1, y1)

R = (x, y)
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Figure 1: Two triangles formed from solutions to Ax + By = C

This can be represented graphically by drawing a triangle starting at P ,
moving −uA in the y direction and uB in the x direction, for some non-zero
real number u. In a similar fashion, a second triangle can be formed from this
new point (which we already have shown to be a solution to the equation) by
moving an additional −vA in the y direction and vB in the x direction. In fact,
every solution to the equation (1) can be constructed in this way. See Figure 1.

We now show that R is on the straight line through P and Q, in the sense
of Euclidean geometry. Since R represents an arbitrary solution to the equa-
tion (1), this will demonstrate fact I above, that all solutions lie on the same
straight line.

Since the x-axis is perpendicular to the y-axis ∠PSQ and ∠QTR are right
angles. Furthermore, if A, B, and v are non-zero, then the ratios
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are the same. Since the two triangles have two pairs of corresponding sides that
are proportional and the included angles are congruent, "PSQ is similar to
"QTR, by the SAS similarity theorem.1 Therefore, ∠SPQ # ∠TQR = θ. On
the other hand, the straight line through P and Q forms the same angle θ with
each of the parallel lines PS and QT , so R is indeed on that straight line, as
required.

The same argument works in reverse to prove fact II above. Indeed, suppose
" is the straight line through P and Q, and let R be an arbitrary point on ".
Construct right angled triangles with legs parallel to the axes and vertices at P ,
Q, and R, as in Figure 1. Since PS and QT are parallel to the vertical axis, the
corresponding angles ∠SPQ and ∠TQR are congruent, and since SQ and TR
are parallel to the horizontal axis, the corresponding angles ∠PQS and ∠QRT
are congruent. Thus the triangles "SPQ and "TQR are similar, by the AA

1If A or B is zero, we have similar degenerate triangles that are either horizontal or vertical
line segments. If v = 0, then R = Q and there is nothing to prove.
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similarity theorem. Hence the lengths of corresponding sides are proportional:

x − x1

x1 − x0

=
y − y1

y1 − y0

.

This equation can be rewritten in the form (1), as required:
(

1

x1 − x0

)

x +

(

−1

y1 − y0

)

y =
x1

x1 − x0

−
y1

y1 − y0

.

3 Relation with the physical notion of straight-

ness

We have shown that the straight lines of Euclid’s geometry are the same as the
lines defined by linear equations in analytic geometry. However, it is unsatisfying
to leave open the question of how the mathematical notion of a straight line
relates to the physical experience of straightness.

How do we decide if a piece of wood or a wall is straight? One way is to
line it up along our line of sight and see if we can detect any wobbles. This
method depends on our belief that light travels in straight lines. We can make
this intuition more mathematical by remembering Fermat’s principle: the path
taken between two points by a ray of light is the path that can be traversed in
the shortest time. Assuming the medium through which the light is travelling
is homogeneous, so that light travels at the same speed at every point, Fermat’s
principle of shortest time is equivalent to saying that light takes the shortest
distance between two points (this is not true when the medium changes, for
example, from air to water, and in fact if you line your sight along a straight
piece of wood as it enters water you will see that it does not in fact look straight,
but appears to bend).

Using these considerations as a guide, we can formulate a notion of straight
line that corresponds to physical experience: a line in R2 is straight if it takes
the shortest path between any two points on it.

The Cartesian measuring stick

In order to even talk about the shortest path, we need some way of measuring
distance between two points—we need a measuring stick. In the Cartesian plane
our measuring stick is the distance formula: if P = (a, b) and Q = (x, y), then
the distance between P and Q is

d(P,Q) =
√

(x − a)2 + (y − b)2.

This formula is really Pythagoras’s theorem in disguise [insert figure and expla-
nation of this]. By the way, if you were wondering in the previous section about
the possibility of light following curved paths, as it does in general relativity,
you can stop worrying. By adopting the Cartesian measuring stick we have put
ourselves very firmly into flat space.
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How do we tell if a path is following the shortest distance?

Now that we have a way of measuring distance, we want a way of deciding
whether a path is the shortest distance between two points. Although we know
how to measure the distance between two points, that’s not quite the same thing
as being able to measure the length of a path. Imagine, for example, trying to
measure the length of a curving brick pathway in your garden. You wouldn’t be
able to use a long, stiff, measuring stick to do this. You would have to make a lot
of small measurements with a short ruler, and add them up. Since even along
small distances the path might curve, this would yield only an approximation
to the length. The problem of defining the length exactly is quite difficult, and
requires the ideas from calculus. Fortunately, there is a way of telling whether
a path is straight without actually measuring its length. The idea is that we
can detect non-straightness quite easily. Suppose we have three points in order
along the path, P , Q, and R. If P , Q, and R are not lined up, the distance
from P to R is less than the sum of the distances from P to Q and from Q to
R. In other words, the shortest distance from P to R deviates from the path.
So our physical definition of straightness can be phrased as follows:

a line " is straight if for any three points P , Q, and R on ", with
Q between P and R, we have

d(P,R) = d(P,Q) + d(Q,R). (2)

We now show that points satisfying this condition satisfy an equation of the
form (1). Suppose that P = (a, b), Q = (x, y), and R = (c, d). Our geometric
condition is

d(P,R) = d(P,Q) + d(Q,R), (3)

or
√

(c − a)2 + (d − b)2 =
√

(x − a)2 + (y − b)2 +
√

(c − x)2 + (d − y)2.

We expect to be able to derive the equation of a straight line from this. A
brute force approach to this might go as follows. First, square both sides of the
equation and get

(c − a)2 + (d − b)2 = (x − a)2 + (y − b)2+

2
√

((x − a)2 + (y − b)2)((c − x)2 + (d − y)2) + (c − x)2 + (d − y)2.

Then, isolate the square root term on the right, square both sides again, and
get

((c − a)2 + (d − b)2 − (x − a)2 − (y − b)2 − (c − x)2 − (d − y)2)2 =

4((x − a)2 + (y − b)2)((c − x)2 + (d − y)2),

which, the intrepid reader will verify, is equivalent to

−4((ad − bc) − (d − b)x + (c − a)y)2 = 0,
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or, finally, the linear equation

(d − b)x − (c − a)y = (ad − bc), (4)

which is in the required form (1).
Note that equation (4) is not necessarily equivalent to equation (3), since we

squared some things along the way. All we can say is that the solutions to (3)
are contained in the solutions to (4). In fact, (3) describes the segment between
P and Q. The other two rays of the line, starting from P and heading away
from Q, and starting from Q and heading away from Q, would be described by
equations similar to (3) but with different signs. The reader can verify that all
these equations lead to the same equation (4).

Back to Euclid

How do we link Euclid’s straight lines to the condition (3)? One of the theorems
in Euclid relates to this condition. Book I, Proposition 20, states that in any
triangle, the sum of any two sides is greater than the remaining one. So, if Q is
not on the line through P and R, then (3) is not satisfied, or, in other words,
(3) implies that Q is on the line through P and R. The converse is taken for
granted in Euclid.
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