In the second half of your statement “If ratios are the comparison of two quantities and ratios represent those two quantities”, you say that ratios represent the quantities. But they don’t. A ratio represents the relationship between the quantities. The quantities are what they are. A ratio associates them.
Then your second question essentially asks why ratios aren’t quantities by asserting that numbers are quantities (?) and numbers in a relationship form a ratio. I guess I wouldn’t say that numbers form ratios. Ratios are associations that describe the relationship between two or more quantities – cups of apple juice to cups of grape juice, or meters walked to seconds elapsed.
Ratios can be equivalent if they have the same value. The value of a ratio is the quotient A/B. A and B are the measurements of the quantities described in the ratio. 2 cups of apple juice to 3 cups of grape juice is equivalent to 6 cups of apple juice to 9 cups of grape juice because 2/3 = 6/9.
If we collect a bunch of those pairs of numbers that are in equivalent ratios, we have a proportional relationship: (2,3), (6,9), (1,2/3), (10,30), … which we can describe with an equation y = kx.