# Truth and consequences: talking about solving equations

The language we use when we talk about solving equations can be a bit of a minefield. It seems obvious to talk about an equation such as $3x + 2 = x + 5$ as saying that $3x+2$ is equal to $x + 5$, and that’s probably a good place to start. But there is a hidden assumption in there that the equation is true. In the Illustrative Mathematics middle school curriculum coming out this month we start students out with hanger diagrams to represent such equations:

The fact that the hanger is balanced embodies the hidden assumption that the equation is true. It is helpful for explaining why you have to perform the same operation on each side when solving equations; if you take two triangles from the left side you have to take two triangles from the right side as well in order to preserve the balance. This leads to a discussion of how performing the same operation on each side of an equation preserves the truth of the equal sign.

But what happens with an equation like $3x + 2 = 3x + 5$? In this case, the hanger diagram is a physical impossibility: the right hand side will always be heavier than the left hand side. I can imagine that students who have an idea of an equation as “the left hand side is equal to the right hand side” might be confused by this situation, and think this is not a proper equation. Especially when they reduce it to $2 = 5$. Students learn to say that this means there are no solutions, but it’s hard to make sense of that response rule without understanding what’s really going on with equations.

The fact is, an equation with a variable in it is neither true nor false, because it is merely a phrase in a longer sentence, such as “If $3x + 2 = x + 5$ then $x = \frac32$.” This sentence is true, but the phrases within it are not sentences and have no inherent truth or falsity. When we perform the same operation on each side of an equation, we are not only preserving the truth of the equal sign but also preserving the consequences of the equal sign. If we use if-then language when talking about equations, then we can make sense of equations with no solutions. A sentence like “If $x$ is a number satisfying $3x + 2 = 3x + 5$ then $2 = 5$” makes perfect sense. It’s the mathematical equivalent of “If the moon is green cheese, then I’m a monkey’s uncle.” It’s a way of saying the moon is not green cheese . . . or that there is no solution to the equation.

The middle schooler’s version of if-then language might not always use the words “if” and “then.” You might say “Imagine there is a number $x$ such that $3x + 2 = x + 5$. What can you say about $x$?” Just as you say “Imagine this hanger is balanced and the green triangles weigh one gram. How much do the blue squares weigh?” I think it’s a useful approach with students to remember that equations are a matter not just of truth, but of truth and consequences.

# Why is a negative times a negative a positive?

OK, I can hear the groans already. There are many contexts for answering this question and they are dubious in varying degrees because the real answer is “because I said so.” That is to say, the rule for multiplying negatives is a convention; adopted for good reasons, but a convention nonetheless. Those good reasons are mathematical: we want to make sure that when we extend multiplication and addition to negative numbers the properties of operations still apply. In particular, we want the distributive property to apply. Meditate on this:
$$3\cdot(5 + (-5)) = 3\cdot5 + 3 \cdot (-5).$$
The left side is really $3 \cdot 0$, so it had better be zero. So the right side had better be zero as well. The first term on the right side is 15, so the other term had better be $-15$. So $3 \cdot (-5) = -15$. We want the commutative law to hold, so we had better say $(-5)\cdot 3 = -15$ as well. Now meditate on
$$(-5)\cdot(3 + (-3)) = (-5)\cdot 3 + (-5)\cdot(-3).$$
The same reasoning tells us that $(-5)\cdot(-3) = 15$.

# What Does It Mean for a Curriculum to Be Coherent?

Al Cuoco and I have been thinking about this question and have developed some ideas. I want to write about the first and most obvious one today, the principle of logical sequencing. I’ll write about others in the weeks to come.

Remember the distinction between standards and curriculum. While standards might remain fixed—a mountain we aim to help our students climb—different curricula designed to achieve those standards might make different choices about how to get there. Whatever the choices, a coherent curriculum, focused on how to get students up the mountain, would make sense of the journey and single out key landmarks and stretches of trail—a long path through the woods, or a steep climb up a ridge.

By the same token, mathematics has its landscape. CCSSM pays attention to this landscape by laying out pathways, or progressions, that span across grade levels and between topics, so that a third grade teacher understands why she is teaching a particular topic, because it will help students with some other topic in the next grade and build on what they already know.

This leads us to the first property of a coherent curriculum: it makes clear a logical sequence of mathematical concepts.

Consider, for example, the concepts of similarity and congruence. It is quite common in school curricula for similarity to be introduced before congruence. This comes out of an informal notion of similarity as meaning “same shape” and congruence as meaning “same shape and same size.” However, the fact that the informal phrase for similarity is a part of the informal phrase for congruence is deceptive about the mathematical precedence of the concepts. For what does it mean for two shapes to be the same shape (that is, to be similar)? It means that you can scale one of them so that the resulting shape is both the same size and the same shape as the other (that is, congruent). Thus the concept of similarity depends on the concept of congruence, not the other way around. This suggests that the latter should be introduced first.

This is not to say you can never teach topics out of order; after all, it is a common narrative device to start a story at the end and then go back to the beginning, and it is reasonable to suppose that a corresponding pedagogical device might be useful in certain situations. But the curriculum should be designed so that the learner is made aware of the prolepsis. (Really, I just wrote this blog post so I could use that word.)

Although the progressions help identify the logical sequencing of topics, there is more work to do on that when you are writing curriculum. For example, the standards separate the domain of Number and Operations in Base Ten and the domain of Operations and Algebraic Thinking, in order to clearly identify these two important threads leading to algebra. But these two threads are logically interwoven, and it would not make sense to teach all the NBT standards in a grade level separately from all the OA standards.

In the next few blog posts, I will talk about three other aspects of coherent curriculum: the evolution from particulars to deeper structures, using deep structures to make connections between topics, and coherence of mathematical practice.

# Quantity progression

The last remaining progression, the quantity progression, is here. Comments in the forums welcome!